

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

<u>MODEL ANSWER</u> WINTER– 18 EXAMINATION

Subject Title: Applied Electronics

Subject Code: 22329 3 Hours / 70 Marks

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer Ma Sc	Marking Scheme
Q.1		Attempt any FIVE of the following : 10	10-Total Marks
	a)	Define the term related to power amplifier. 2N (i) Efficiency (ii) Voltage gain	2M
	Ans:	(i) Efficiency: Efficiency of the power amplifier is defined as the ratio of maximum a.c. output power to the d.c. input power. Mathematically,	l Mark for each definati on

b)	List any four applications of RC coupled amplifier.	2M
Ans:	Applications of RC coupled amplifier:(i)Widely used as Voltage amplifiers.(ii)They are used in Public Address System.(iii)In Tape recorders.(iv)In stereo amplifiers(v)In T.V. V.C.R. and C.D. Players.	1 Marks each (Any four)
c)	State the role of tuned LC circuit in tuned amplifier.	2M
Ans:	In order to pick up and amplify the desired radio frequency signal, the resistive load in the audio amplifier is replaced by a tuned circuit (also called a parallel resonant circuit)as shown in the figure. The tuned circuit is capable of selecting as particular frequency and rejecting the others.	State 1 ^{1/2} Marks and Diagra m 1/2 mark
d)	List different types of feedback amplifiers.	2M
Ans:	Types of feedback amplifiers: 1. Positive feedback amplifiers 2. Negative feedback amplifiers (i)voltage series feedback amplifiers (ii)voltage shunt feedback amplifiers (iii)current series feedback amplifiers (iv)current shunt feedback amplifiers	Each type 1 mark
e)	List the advantages of negative feedback over positive feedback.	2M
Ans:	 <u>Advantages of negative feedback over positive feedback</u>: 1. Higher fidelity i.e. more linear operation. 2. Highly stabilized gain. 3. Increased bandwidth i.e. improved frequency response. 	Any four Each 1 mark

	4. Less amplitude distortion.		
	5. Reduced noise.		
	6. Less harmonics distortion.		
	7. Less phase distortion.		
	8. Input and output impedance can be modified as desired.		
	9 Less frequency distortion		
	7. Less frequency distortion.		
f)	Compare amplifier and oscillator.	2M	
Ans:	INPUTOUTPUTSIGNALOUTPUTSIGNALDC POWERINPUTSIGNALDC POWERINPUTSIGNALAn amplifier is a device, which produces an output signal then no energy conversion take place.Thus there is no output signal.An oscillator is a device, which produces an output signal, without any input signal of anydesired frequency. It keeps producing an output signal, so long as the D.C. power issupplied. An oscillator does not require any external signal to start or maintain energy <td cols<="" td=""><td>Diagra m 1 mark and explaina tion 1 mark</td></td>	<td>Diagra m 1 mark and explaina tion 1 mark</td>	Diagra m 1 mark and explaina tion 1 mark
g)	State use of heat sink.	2M	
Ans:	Heat sink is a heat exchanger used to transfer heat generated by a <i>mechanical or an electronic device</i> to the surroundings. Heat sinks are either made up of aluminium or copper or any other material which is good conductor of heat. Because conductor helps in conduction of heat from heated surface to the outside air.	State 2	
	Heat sinks are commonly used in laptops, computers etc.	mark	
	A heat sink is usually made out of copper and/or aluminum.		

	•	$V_{CC} - I_C R_C = V_{CE}$ When the input a.c. si collector current incre is constant, from equa From above in commo output voltage decreas	gnal voltage increase eases (as $I_C = \beta I_B$). Heation 1 output voltage on emitter amplifier ses. i.e. output is 180	es, the base current ind Hence voltage drop I_C e V_{CE} decreases. when the input increas P° out of phase with in	creases as a result R_C increases. As V_{CC} ses in the positive, the put.	
	Wavefo	orm:				
	Vin					
	Vo		t			
b)	Compa	re positive and negative	ve feedback			4M
b)	Compa	re positive and negativ	ve feedback.	Negative		4M
b)	Compa Sr. No.	re positive and negativ Parameter	ve feedback. Positive feedback	Negative feedback		4M
b)	Compa Sr. No. 1	re positive and negativ Parameter BW	ve feedback. Positive feedback Increases	Negative feedback Decreases		4M
b)	Compa Sr. No. 1 1	re positive and negativ Parameter BW Feedback signal	ve feedback. Positive feedback Increases In phase with the input signal.	Negative feedback Decreases 180 ° out of phase with the input signal.		4M
b)	Compa Sr. No. 1 1 2	re positive and negativ Parameter BW Feedback signal Net input signal	ve feedback. Positive feedback Increases In phase with the input signal. Increases	Negative feedbackDecreases180 ° out of phase with the input signal.Decreases		4M Any
b)	Compa Sr. No. 1 1 2 3	re positive and negative Parameter BW Feedback signal Net input signal Gain	ve feedback. Positive feedback Increases In phase with the input signal. Increases Increases Increases	Negative feedbackDecreases180 ° out of phase with the input signal.DecreasesDecreases	-	4M Any four point
b) Ans:	Compa Sr. No. 1 1 2 3 4	re positive and negative Parameter BW Feedback signal Net input signal Gain Noise	Ve feedback. Positive feedback Increases In phase with the input signal. Increases Increases Increases Increases	Negative feedbackDecreases180 ° out of phase with the input signal.DecreasesDecreasesDecreasesDecreases		4M Any four point Each point
b) Ans:	Compa Sr. No. 1 1 2 3 4 5	re positive and negativ Parameter BW Feedback signal Net input signal Gain Noise Stability	Ve feedback. Positive feedback Increases In phase with the input signal. Increases Increases Increases Increases Poor	Negative feedbackDecreases180 ° out of phase with the input signal.DecreasesDecreasesDecreasesDecreasesImproved		4M Any four point Each point M
b) Ans:	Compa Sr. No. 1 1 2 3 4 5 6	re positive and negative Parameter BW Feedback signal Net input signal Gain Noise Stability Input impedance	Ve feedback. Positive feedback Increases In phase with the input signal. Increases Increases Increases Poor decreases	Negative feedbackDecreases180 ° out of phase with the input signal.DecreasesDecreasesDecreasesImprovedincreases		4M Any four point Each point M
b) Ans:	Compa Sr. No. 1 1 2 3 4 5 6 7	re positive and negative Parameter BW Feedback signal Net input signal Gain Noise Stability Input impedance Output impedance	ve feedback. Positive feedback Increases In phase with the input signal. Increases Increases Increases Poor decreases increases increases	Negative feedbackDecreases180 ° out of phase with the input signal.DecreasesDecreasesDecreasesImprovedincreasesdecreases		4M Any four point Each point M

c)	Define oscillator and state the Barkhausen criterion for the generation of sustained oscillations.	4M
Ans:	Oscillator: An oscillator is a device, which produces an output signal, without any input signal of any desired frequency. Barkhausen criterion: The overall voltage gain of a positive feedback amplifier is given by, $\boxed{A' = \frac{A}{1 - \beta A}}$ (1) Where, A = gain of an amplifier without feedback also called open loop gain $\beta A =$ product of feedback fraction and open loop gain. It is called loop gain. The Barkhausen criterion for the generation of sustained oscillations. for positive feedback are: 1. $\beta A = 1$	Definiti on 1 M and Barkhau sen criterion 3 M
d)	Explain the working of SMPS with neat block diagram.	4M
Ans:	A block diagram of Switch Mode Power Supply is shown in figure. The first block is rectifier and filter that converts the A.C. supply voltage to pulsating D.C. which is then filtered out to reduce the amount of ripple content. This section uses the power diodes in bridge configuration to obtain the pulsating d.c. and the capacitor is used as a filter element. The second block is the high frequency switching section and it uses either MOSFETs or BJTs to convert the D.C. voltage to a high frequency ac\.c. square wave. This high frequency a.c. square waves ranges from 20 KHz to 100 KHz. Since the power dissipation. Thus it is a two stage conversion i.e. the input a.c. supply voltage is first rectified to d.c. and then the high frequency switching section changes it back to A.C. The next block of SMPS is high frequency power transformer that isolate the circuit and step up or step down the voltage to the desired voltage level. The output of the transformer is the input of the second rectifier section, called the output rectifier section. This rectifier section is different from the first block of the rectifier uses a high frequency of the voltage is very high. Therefore, the bridge configuration of this rectifier uses a high frequency diodes such as schottky diode and the output ripple is naturally filtered becouse of the number of the overlaps between each individual output pulse. Since the ripple is very	Block diagram 2 M And explanat ion 2 M

		small in output voltage of the rectifier, a small capacitance is required in the filter section. The last section of the SMPS is the control and feedback block, which contains circuitry that provides Pulse Width Modulation (PWM) output signal. The PWM controller provides duty cycle that varies pulse by pulse to provide an accurate d.c. output voltage.	
Q.3		Attempt any THREE of the following :	12-Total Marks
	a)	Explain with sketch the working of class B push pull amplifier.	4M
	Ans:	 Circuit Diagram:- Circuit Diagram:- In class B amplifier transistor conduct only for half cycle of input signal on conduct in positive half cycle and other conducts in negative half cycle. Transformer T₁ is called as input transformer called phase splitter and produces two signals which are 180 degree out of phase with each other. Transformer T₂ is called as output transformer and is required to couple the a.c signal from the collector to the load. When there is no input signals both the transistor Q₁ and Q₂ are cut off hence no current is drawn from Vcc supply. Thus there is no power wasted in stand by the power dissipation in both transistor is practically zero. During positive half cycle ON Q₂ OFF and at the output half cycle is obtained Q₁ during negative half OFF and Q₂ on hence another half cycle is obtained cycle Q₁ at the output. Then output transformer joins these two halves and produces a full sine wave in the load resistor. 	Circuit Diagram 2M & Operati on 2M
	b)	Compare different types of power amplifier on basis of- (i) Efficiency.	4M

	Parameter	Class A	Class B	Class AB	Class C	
	Position of operating pt. (Q Point) on load line	Q point is at the center of load line.	On X axis	Just above X axis.	Below X axis.	
Ans:	Efficiency	lowest efficiency 25% to 50%	Above 78.5%	Between 50 to 78.5%	Above 95%	Ea dif ce 1M
	Conduction Angle of collector current	Conducts for (360 ⁰) full cycle of input signal	(180 ⁰) half cycle of input signal.	Greater than 180 ⁰ and less than 360 ⁰	Less than 180 ⁰ of input signal.	
	Power dissipation in transistor	Very High	Low	Low	Very Low	
c) Ans:	Draw miller sweep g Diagram:	sweep circuit.	<u>e its application</u> <u>ttor: (any two)</u> utput is expecte nto ramp wavef	ns. ed. form.		4N Dia m: & Ap ior (ar tw 2N

Q.4	A)	Attempt any THREE of the following :	12-Total
-	a)	State the necessity of regulated power supply. Define load and line regulation.	4M
		<u>Necessity of regulated power supply: 2M</u> The major disadvantage of a power supply is that the output voltage changes with the variations in the input voltage or The D.C output voltage of the rectifier also increase similarly, In many electronic applications, it is desired that the output voltage should remain constant regardless of the variations in the input voltage or load. In order to get ensure this; a voltage stabilizing device called voltage regulator is used.	Necessit
		in load current. Mathematically,	y 2M ,
	Ans:	Load Regulation = $\frac{V_{NL} - V_{FL}}{\Delta I_L}$ Where, V_{FL} is full load voltage ΔI_L is change in laod current V_{NL} is no load voltage	Load Regulati on 1M & Line regulati on 1M
		$\label{eq:line_regulation:1M} \begin{split} \underline{\text{Line Regulation:1M}} & \text{The change in output voltage with respect to per unit change in input voltage is defined as line regulation. It is mathematically expressed as, \\ & \text{Line regulation=} \Delta V_L / \Delta V_S \\ & \text{Where,} \\ & \Delta V_L = \text{The change in output voltage} \\ & \Delta V_S = \text{The change in input voltage} \end{split}$	
	b)	Explain the working principle of crystal oscillator with diagram.	4M
	Ans:	Circuit Diagram:	

	Working Principle of Piezoelectric Crystal:							
	• A Quartz Crystal has a very peculiar property known as Piezoelectric Effect.							
	• According to this effect, when an AC voltage is applied across a quartz crystal, it vibrates at a frequency of applied voltage.							
	• Conversely, if a mechanical force is applied to vibrate a quartz crystal it generates an AC voltage.							
	 Above fig shows the circuit of crystal oscillator using transistor. In this circuit, the crystal is connected as a series element in the feedback path from collector to the base. The resistors R₁, R₂ and R_E provide voltage divider stabilized d.c. bias circuit. The capacitor C_E provides a.c bypass of emitter resistor and RFC coil provides for d.c bias. The coupling capacitor C has negligible impedance at the circuit operating frequency. 							
	• The circuit frequency of oscillation is set by the series resonant frequency of the crystal and its value is given by the relation							
	$fr = \frac{1}{2\pi\sqrt{LC}}$ Or							
	Working Principle: When the D.C. power is switched on, the noise voltage of small amplitude appearing at the base gets amplified and appears at the output. This amplified noise now drives the feedback network consisting of a quartz crystal and capacitor C. Thus the crystal is excited by a fraction of energy feedback from the output to the input. The crystal is made to operate as an inductor L so that the feedback network consists of series resonant LC circuit. This is possible only, if the frequency of oscillations f ₀ is in between the series resonant frequency f _s and the parallel resonant frequency f _p of an electrical equivalent circuit of a crystal . Thus, the frequency of oscillations is set by the series resonant frequency f _s of the crystal. This produces undamped oscillations of stable frequency f ₀ .							
	211 4 20							
c)	Compare the performance of current series and current shunt feedback amplifier.	4M						
	SF.NO. Characteristics Current series feedback Current shuft feedback amplifier	(Any						
A	1.Voltage gainDecreasesDecreasesDecreases	Four)						
Ans:	2. Bandwidth Increases Increases	each						
	3.Harmonic distortionDecreasesDecreases	1M						

WORKING:

- Common emitter amplifier introduces a 180⁰ phase shift between input & output. & remaining 180⁰ phase shift is produced by three identical basic RC phase shifting networks.
- Each RC network is designed to introduce a phase shift of 60° .
- The phase shift around the loop is 360° only at one precise frequency.
- This frequency of oscillation is given by

$$f_o = \frac{1}{2 \pi RC \sqrt{6}}$$

The feedback factor
$$\beta = \frac{1}{29}$$

• Therefore $A_V = 29$

Calculation For f_0 :
Given:
$R=220 K\Omega$
C = 500 pF
To Find:
Frequency of oscillation f_o .
Formula Used: $f_o = \frac{1}{2 \pi RC \sqrt{6}}$
Solution: $f_o = \frac{1}{2 \pi RC \sqrt{6}}$
$f = \frac{1}{1}$
$\int_{0}^{0} 2\pi * 220K\Omega * 500pF * \sqrt{6}$

$$f_o = 590.67 \text{ Hz}$$

The frequency of sine wave generated by the oscillator = 590.67 Hz.

b)	Explain operation of FET common source amplifier with applications.	6M
Ans:	COMMON SOURCE FET AMPLIFIER: <u>Circuit Diagram:</u>	Circuit Diagra m: 2M Operati on: 2M Applica tions (any 2): 2M

- Above circuit shows CS N-channel FET amplifier.
- Voltage divider biasing circuit is used.
- C_1 & C_2 are coupling capacitors used to couple input AC signal & output respectively.

• Cs is a bypass capacitor which keeps the source of FET effectively.

OPERATION:

DURING POSITIVE HALF CYCLE:

- As the gate to source voltage increases, the drain current also increases.
- As a result of this, the voltage drop across resistor R_D also increases.
- This causes the drain voltage to decrease. As $V_{DS} = V_{DD} I_D R_D$.
- It means that the positive half cycle of the input produces negative half cycle of the output voltage.

• In other words output voltage is 180 out of phase with the input voltage.

DURING NEGATIVE HALF CYCLE:

- As the gate to source voltage decreases, the drain current also decreases.
- As a result of this, the voltage drop across resistor R_D also decreases.
- This causes the drain voltage to increase. As $V_{DS} = V_{DD} I_D R_D$.
- It means that the negative half cycle of the input produces positive half cycle of the output voltage.
- In other words output voltage is 180 out of phase with the input voltage.

APPLICATIONS OF CS-FET AMPLIFIER:

- As a pre-amplifier in audio circuits.
- As a voltage amplifier.
- In the public address system.
- In radio & TV amplifier circuit.

		Class AB Amplifier Operation	
Q.6		Attempt any TWO of the following:	12- Total Marks
	a)	Explain stagger tuned amplifier with the help of waveforms.	6M
	Ans:	Circuit Diagram: Vcc R1 C_1 C_1 Vcc R1 C_2 C_2 L_2 $Vout$ Vin $R2$ RE C_E $R2$ RE C_E Above figure shows two-stage tuned voltage amplifier. The stagger tuning in this circuit, may be achieved by resonating the tuned circuits L_1C_1 and L_2C_2 to slightly different frequencies. Frequency Response:	Circuit Diagra m: 2M Wavefo rm (Freque ncy Respon se): 2M Explain ation:2 M

	 Working: Input signal V_{in} is applied to both the transistor through input capacitor. During positive half cycle of input: The base of the transistors NPN & PNP is positive. As a result of this NPN conducts & PNP remains OFF. So we get half cycle in the output. During negative half cycle of input: The base of the transistors NPN & PNP is negative. As a result of this PNP conducts & NPN remains OFF. So we get remaining half cycle in the output. 	
c)	In voltage amplifier output voltage without negative feedback is 10V. If 25% of output voltage its feedback in series with input voltage. Find Feedback voltage, also give value of the feedback factor.	6M
Ans:	Given Data. $V_{OUT} = 10V$ 25% of output voltage its feedback in series with input voltage. To find: 1. Feedback voltage V _F 2. Feedback voltage V _F : 25% of output voltage its feedback in series with input voltage. i.e. V _F = 25% of V _{OUT} V _F = 25% of 10V V _F = 2.5V 2. Feedback factor β : $\beta = \frac{V_F}{V_{OUT}}$ $\therefore \beta = \frac{2.5V}{10V}$ $\therefore \beta = 0.25$ 1. Feedback voltage V _F = 2.5V 2. Feedback factor $\beta = 0.25$	Caculati on of feedbac k voltage: 3m Caculati on of feedbac k factor:3 m

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

MODEL ANSWER

SUMMER-19 EXAMINATION

Subject Title: Applied ElectronicsSubject Code: 22329

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. Su	ub	Answer	Marki ng Sahom
No. Q.	2.IN.		e
Q.1		Attempt any Five :	10M
a))	State classification of Amplifiers.	2M
Ar	ns:	CLASSIFICATION OF AMPLIFIERS:	2M
		A] Based on input signal	
		1. Small signal amplifiers	
		2. Large signal amplifiers	
		B] Based on output signal	
		1. Voltage amplifier	
		2. Power amplifier	
		C] Based on biasing conditions	
		1. Class A amplifier	
		2. Class B amplifier	
		3. Class AB amplifier	
		4. Class C amplifier	
		D] Based on frequency response	
		1. Audio frequency amplifier	
		2. Radio frequency amplifier	
		E] Based on coupling	
		1. Direct coupled amplifiers	
		2. R-C Coupled amplifier	

	3. Transformer coupled amplifier	
b)	Define the terms related to tuned amplifiers (i) Resonant Frequency(Fr)	2M
	(ii) Q Factor	
Ans:	(i) Resonant Frequency (Fr): It is a frequency at which the inductive reactance is equal to the	1M
	capacitive reactance i.e. $X_L = X_C$	1М
	(ii) Q Factor: The quality factor or Q factor is a measure of the performance of a coil,	1111
	$\alpha = \frac{x_L}{\omega_0 L} = \frac{2\pi f_0 L}{\omega_0 L}$	
	$Q_0 = \frac{1}{R} = \frac{1}{R} = \frac{1}{R}$	
	Where , $L =$ value of circuit inductance.	
	R = Value of circuit resistance.	
c)	State the need of multistage amplifier.	2M
Ans:	Need of multistage amplifier:	2M
	The voltage (or power) gain, obtained from a single stage small signal amplifier, is limited.	
	Therefore, it is not sufficient for all practical applications. Therefore, in order to obtain greater	
	voltage and power gain, we have to use more than one stage of amplification. Such an	
	amplifier is called a 'MULTISTAGE AMPLIFIER'.	
d)	List the types of power amplifiers.	2M
Ans:	Types of power amplifiers:-	Each
	1. Class A amplifier	type:
	2. Class B amplifier	1/2M
	3. Class AB amplifier	
	4. Class C amplifier	
e)	List advantages of negative feedback(any four)	2M
Ans:	Advantage of negative feedback amplifier:	Each
	• Increased stability in gain	point:
	Increased bandwidth	1/2M
	Less amplitude and harmonic distortion	
	• Decreased noise	
	Less frequency distortion	
	Less non-linear distortion	
	Input and output resistance can be modified as desired.	
f)	Define :	2M
	(i) Sweep time	
<u> </u>	(ii) Retrace time	47.5
Ans:	(i) Sweep time: It is defined as time interval taken by time based signal generator to	1M
	increase from minimum to maximum voltage	

		(ii) Retrace time: It is defined as time taken by time based signal generator to decrease					
		from maximum to minimum voltag	ge.				
	g)	State fixed voltage regulator IC'S.				2M	
	Ans:	Fixed voltage regulator IC's can provide fixed amount of voltage either in positive or in					
		negative.					
		78XX can generate positive values of volt	ages			IC's	
		\mathbf{F}_{α}	uges.			from	
		IC NUMBER OUTPUT VOLTAGE					
		IC NUMBER OUTPUT VOLTAGE 7805 +5.0 V					
		7805		+5.0 V		79XX	
		7808		+8.0 V		series	
		7809		+9.0 V		1/2 M	
		7812		+12.0 V		/2 IVI	
		7815		+15.0 V		Calli	
		7818		+18.0 V			
		7824		+24.0 V			
		79XX can generate negative values of volt	tages.				
		IC NUM	BER	OUTPUT VOLTAGE			
		7905		-5.0 V			
		7906f		-6.0 V			
		7908		-8.0 V			
		7912		-12.0 V			
		7915		15.0 V			
		7918		-18.0 V			
		7924		-24.0 V			
Q 2		Attempt any Three of the following :				12M	
	a)	Sketch circuit diagram of RC coupled si	ingle st	age CE amplifier	•	4 M	
		State the function of each component.	_				
	Ans:	Circuit diagram of RC coupled single st	tage CH	E amplifier:		2M	
			-	_			
			i	+V _{CC}			
		R ₁ and R ₂ are		Be coupling capacitors			
		biasing resistors	vi	C2			
			R				
		v; o	-G				
			ţ	Amplifi	be		
		AC input signal	~		jnal		
		o	+	Bypass capac	tor		
		Single stage R	C coupled	CE amplifier			
		Function of Components:					
		• The Ω point is determined by the $V_{\alpha\alpha}$	supply	along with the re	sistance \mathbf{R}_{α} . The resistances	Each	
		$\mathbf{P} = \mathbf{P} = \mathbf{P} = \mathbf{P} + $, suppry	anong with the le	isotanee RC. The resistances	compo	
		$\mathbf{K}_{1}, \mathbf{K}_{2}, \mathbf{K}_{E}$ form the biasing & stabilization	uon cir	cuit. Thus establis	nes proper operating point.	nent	
		• Input capacitor $(C_{in} \approx 10 \mu F)$: It block	cks DC	c voltage to the ba	ase, if it is not provided the	functi	
		source resistance comes across R_2 so	that tra	nsistor gets unbias	sed. It allows a c. to pass &	on:	
		isolates source resistance from D	and the	Sets anota		1/2 M	
			•, •				
		• Emitter capacitance ($C_E \approx 100 \mu F$):	1t 1s	used in parallel	with R_E to provide a low		

	the gate to source voltage. This produces variation in the drain current. As the gate to source voltage increases, the drain current also increases. As the result of this voltage drop across R_D also increases. This causes the drain voltage to decreases.	
	• As the input voltage rises, gate to source voltage becomes less negative, it will increase the channel width and increase the level of drain current In-	
	As the input voltage falls, it will decrease the channel width and	
	decrease the level of drain current I _D .	
	• Thus I_D varies sinusoidally above its Q point value.	
	• The drain to source voltage V_{DS} is given by	
	• $V_{DS} = V_{DD} - I_D R_D$	
	• Therefore as I_D increases the voltage drop I_DR_D will also increase	
	and voltage V_{DS} will decrease.	
	• If ΔI_D is large for a small value of ΔV_{GS} ; the ΔV_{DS} will also be large	
	and we get amplification. Thus the AC output voltage V_{DS} is 180° out of phase with AC input voltage	
L)	Input voltage.	41) (
D) Ans:	Explain the term crossover distortion. State methods to overcome it.	4M
AII 5.	Cross over distortion occurs in Class B push pull Amplifier	2111
	• In the push-pull configuration, the two identical transistors get into conduction, one after	
	the other and the output produced will be the combination of both	
	• When the signal changes or crosses over from one transistor to the other at the zero	
	voltage point, it produces an amount of distortion to the output wave shape. For a	
	transistor in order to conduct, the base emitter junction should cross 0.7v, the cut off	
	voltage. The time taken for a transistor to get ON from OFF or to get OFF from ON state is called the transition period .	
	• At the zero voltage point, the transition period of switching over the transistors from one	
	to the other, has its effect which leads to the instances where both the transistors are OFF	
	at a time. Such instances can be called as Flat spot or Dead band on the output wave	
	shape.	
	Waveform:-	1M
	↑	
	$\bigcap TR_1 ON$ Cross over	
	distortion (wt)	
	$ \begin{array}{c c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	
	Output waveform	1M
	Method to overcome :	
	This cross over distortion can be eliminated if the conduction of the amplifier is more than	
	1 1	1

	one half cycle, so that both the transistors won't be OFF at the same time. The remedy is to use Class AB amplifier.			
c)	Compare positive feedback and negative feedback on the basis of: (i) Gain (ii) Bandwidth (iii) Phase shift (iv) Stability			
Ans:	Sr. no. Parameter Positive feedback Negative feedback	Each point		
	1GainIncreasesDecreases	1M		
	2 Bandwidth Decreases Increases			
	3 Phase shift 0 or 360 degree 180 degree			
	4 Stability Poor Improved			
4)	Draw black diagram of SMPS. State its working principle	4M		
u)	Plack diagram of SMDS.	2M		
	Working principle:-	2M		
	A switched-mode power supply is an electronic power supply that incorporates a switching			
	regulator to convert electrical power efficiently.			
	An SMPS transfers power from a DC or AC source (often mains power) to DC loads, such as			
	power supply, the pass transistor of a switching-mode supply continually switches between			
	power suppris, are pass dansierer of a switching more suppris community switches compared			
	low-dissipation, full-on and full-off states, and spends very little time in the high dissipation			
	low-dissipation, full-on and full-off states, and spends very little time in the high dissipation transitions, which minimizes wasted energy.			
	low-dissipation, full-on and full-off states, and spends very little time in the high dissipation transitions, which minimizes wasted energy. Ideally, a switched-mode power supply dissipates no power.			

	-		
		Switching regulators are used as replacements for linear regulators when higher efficiency, smaller size or lighter weights are required.	
		OR	
		Working :-	
		Rectifier and filter :- It converts the ac supply voltage to a pulsating dc, which is then filtered out to reduce the amount of ripple content. It uses the power diodes in a bridge configuration to obtain the pulsating dc and the capacitor is used as a filter element.	
		High-frequency switching: - It uses either MOSFETs or BJTs to convert the dc voltage to high frequency ac square wave. This high-frequency ac square wave ranges from 20 kHz to 100 kHz. Since the power transistors are not operated in their active region, their operation results in low power dissipation. Thus, it is a two stage conversion. i.e. the input ac supply voltage is first rectified to dc and then the high- frequency switching section changes it back to ac. High frequency power transformer: -It isolates the circuit and steps-up or steps-down the voltage to the desired voltage level. The output of the transformer is the input of the second rectifier section, called the output rectifier section. Output rectifier : - This rectifier section is different from the first block of the rectifier in that	
		the frequency of the voltage is very high. Therefore, the bridge configuration of this rectifier uses a high frequency diode such as a Schottky diode and the output ripple is naturally filtered because of the number of overlaps between each individual output pulse. Since the ripple is very small in the output voltage of the rectifier, a small capacitance value is required in the	
		filter section. Control and feedback :- It provides a pulse width modulation(PWM) output signal. The PWM controller provides a duty-cycle that varies pulse by pulse to provide an accurate dc output voltage.	
Q.4	A)	Attempt any THREE of the following :	12- Total Marks
	a)	Calculate Resonant frequency of single tuned amplifier, if inductor $L = 10mH$ and Capacitor $C = 4.7 \mu f$ of tank circuit.	4 M
	Ans:	L = 10mH	
		C = 400 str	
			Form
		For Single Lined Auglifier.	ula &
		$Sr = \frac{1}{2\pi\sqrt{L\cdot C}}$	1M
		fr = 1 $2\pi \sqrt{10mHx4724F}$	each Corrot
		$f_{Y} = -1$ $2 \pi \sqrt{10 \times 10^3} \times 4.7 \times 10^{-6}$	ans 2M
		$fr = 734.12 H_2$	

b)	An amplifier has gain 'A' of 300 without feedback, output impedance is $1K\Omega$. If negative feedback with feedback factor 0.03 is introduced in the circuit then calculate the gain with feedback and output impedance of this feedback amplifier.	4 M
Ans:	$R_{0} = 300$ $R_{0} = 1 \times n$ $p = 0.03$ $A \vee f = 9$ $R_{0}' = 9$ $A \vee f = 300$ $(1 + 0.02 \times 3.0)$ $A \vee f = 30$ $(1 + p \cdot n \vee)$ $R_{0}' = 1 \times (1 + p \cdot n \vee)$ $R_{0}' = 1 \times (1 + p \cdot n \vee)$ $R_{0}' = 1 \times (1 + p \cdot n \vee)$ $R_{0}' = 1 \times (1 + p \cdot n \vee)$ $R_{0}' = 1 \times (1 + p \cdot n \vee)$	gain with feedl ck- 2M, outp impe ance 2M
c)	Describe miller sweep generator circuit with neat input output waveforms	4M
Ans:	('irouit diagram)	
	Circuit diagram	2M
	Vcc Rest C Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vcc	2M
	Working: • Figure shows the circuit of a Miller integrator or a sweep circuit.	2M
	 Chicuit diagram Vcc R_{B1} (Q1) R_{B1} (Q1) G² Working: Figure shows the circuit of a Miller integrator or a sweep circuit. Transistor Q1 acts as a switch and transistor Q2 is a common - emitter amplifier. i.e. a high gain amplifier. 	2M
	 Checking: Figure shows the circuit of a Miller integrator or a sweep circuit. Transistor Q₁ acts as a switch and transistor Q₂ is a common - emitter amplifier. i.e. a high gain amplifier. Consider the case when Q₁ is ON and Q₂ is OFF. At this condition, the voltage across the capacitor C and the output voltage Vo is equal to V_{cc}. 	2M

		 re co co vo se aj aj so It 	eference voltage ompelled to ope onstant current oltage of 7.15V eries pass transis oplied at Invert oplied at the No o has to be exter is this transisto	The working can be generator and the error amp In the reference vol- erate at fixed point (so that Source which comes alor at the Verve pin of the IC. As for the error ampli- stor Q1 and a current limitin The error amplifier ting input terminal through on-Inverting input terminal. mally provided in accordance The conduction of the r that controls the output vo	explained by dividing plifier. oltage generator, a Za sneer output voltage is ng with an amplifier t ifier section, it consists ng transistor. can be used to compa h a feedback to the re This connection is not p ce with the required outp e transistor Q1 is control oltage.	it into two blocks, the enger diode is being s a fixed voltage) by a to generate a constant of an error amplifier, a are the output voltage ference voltage Verve provided internally and put voltage. lled by the error signal.	
Q.5	a)	Solve	e any TWO :	lad transformer counter	d direct		12M 6M
		Couj	oled amplifier (i) Ty (ii) Fr (iii) Ga (iv) Ap	on the basis of: pe of coupling equency response ain oplication			
	Ans:	Sr. no	Parameter	RC coupling	Transformer coupling	Direct coupling	1 ½ M each
		1	Types of coupling	RC coupling-Resistor, Capacitor are used as a coupling network	Transformer is used as a coupling network	No coupling network is u	point
		2	Frequency Response	Cow frequency Roll off Big up of Band width 50Hz 20KHz Frequency (f)	(gp) ure e der und der der der der der der der der der de	$\frac{ f (dB)A}{20 \log A_{d}}$	

3	Gain	Overall gain is less due	It provides high	Uniform gain up to	
		to loading effect	voltage gain than RC	certain frequency	
			coupled	,gain rolls off at high	
				frequency	
4	Application	Voltage amplification	Power amplification	Low frequency	t
				amplification	
A co symi deliv	mplementary metrypushpu verpowertoloa i) ii ii iii	llamplifierisoperatedus ad R _L =50.Calculate. Maximum power output Power rating of transist D.C input at maximum	ing±10voltand t tor 1 power output.		
	Give J M ii) Pa	n: $V_{cc} = \pm 10V$ RL aximum Power out Po (max) = $\frac{V_{cc}^2}{2 \cdot R_L}$ = ower rating of tran $Vm = \frac{2V_{cc}}{T} = \frac{2}{T}$ otal collector power m Pc (dc) = Pin (dc) - = Vcc ($\frac{2Vm}{T1 \cdot R_L}$ = 10 ($\frac{2 \times 6.36}{T1 \times 50}$ = 0.4053 W	$= 50 \Omega$ put $\frac{(10)^2}{2 \times 50} = \frac{100}{100} = 1 M$ isistor $(10 = 6.36V)$ rating in two tran $Po (a c)$ $) - \left(\frac{Vm^2}{2R_L}\right)$ $- \frac{(6.36)^2}{2 \times 50}$ 0.4044 ransistor	nsistor	each point

	v)App	lication					
Ans:	Sr. No	Parameter	Class A	Class B	Class C	Class AB	Effi ncy
	1	Angle of conduction	360 ⁰	1800	Less than 180 ⁰	More than 180° less than 360°	poin 2M oth
	2	Efficiency	25% can increase to 50%	78.5%	95%	78.5%	poi 1M eac
	3	Position of operating point in power dissipation	At the center of load line	On X-axis	Below X- axis	Just above X-axis	
	4	Distortion	No distortion	Distortion more than A and AB but less than C	Maximum distortion	Less than B and C but more than A	
	5	Application	Outdoor musical system	Audio power amplifiers	Audio power amplifier	RF amplifier	
b) Ans:	Draw ndboo Circu	Bootstrapsweepgenera tstrapsweepgeneratory it diagram of bootstrap	torcircuit.Com withrespecttoth o sweep genera	pareMillerInte netechniqueuse tor:	egratora ed.		6M 2M
b) Ans:	Draw ndboo Circu	Bootstrapsweepgeneratory otstrapsweepgeneratory it diagram of bootstrap	torcircuit.Com withrespecttoth o sweep genera	pareMillerInterest netechniqueuse tor: $T_{M_1}^{\text{input}} \xrightarrow{T_{T_S}} T_{T$	egratora ed.		6M 2M
b) Ans:	Draw ndboo Circu	Bootstrapsweepgeneratory it diagram of bootstrap R ₁ R ₂ Miller Integrator	torcircuit.Com withrespecttoth o sweep genera	pareMillerInter netechniqueuse tor:	egratora ed.	rator	6M 2M
b) Ans:	Draw ndboo Circus	Bootstrapsweepgeneratory it diagram of bootstrap R ₁ R ₂ Miller Integrator	torcircuit.Com withrespecttoth o sweep genera	pareMillerInter netechniqueuse tor:	egratora ed.	rator	6M 2M
b) Ans:	Drawl ndboo Circui	Bootstrapsweepgeneratory it diagram of bootstrap R1 R2 Miller Integrator It is an integrator us step waveform into ra	torcircuit.Com withrespecttoth o sweep genera	pareMillerInter netechniqueuse tor:	egratora ed. cap sweep gene tstrap time ba t current is ning nearly co fixed resistor or	rator se generator a obtained by onstant voltage in series with	6M 2M Any poin 1M eac
b) Ans:	Draw ndboo Circus Sr. No 1	Bootstrapsweepgeneratory it diagram of bootstrap ^{R1} ^{R2} Miller Integrator It is an integrator us step waveform into ra In Miller sweep polar is negative.	torcircuit.Com withrespecttoth o sweep genera to ci for the sweep genera to ci for the sweep vert amp waveform.	pareMillerInter netechniqueuse tor:	egratora ed. cap sweep gene tstrap time ba t current is ning nearly co fixed resistor or strap polarity o ve	rator se generator a obtained by onstant voltage in series with f sweep voltage	6M 2M Any poin 1M eac

	4 5	Open circuit gain of the amplifier is infinity The Linearity of sweep voltage is better than Bootstrap sweep circuit	Open circuit gain of the amplifier is unity The linearity of sweep voltage is poor than Miller integrator	
c)	Build voltage along w	the circuit diagram regulatortoget+12Vdeand-12Vdc using IC ⁄ith rectifier.	of dual 7812and IC 7912	6M
Ans:		Transformation Rechifier + filter 230V 50Hz D_1 D_4 D_1 D_4 D_1 D_2 C_1 C_1 C_1	Voltage Regulator $=$ $1 \overline{7812} \xrightarrow{3}$ $1 \overline{7812} \xrightarrow{3}$ $1 \overline{722} \xrightarrow{2} \overline{7812} \xrightarrow{7}$ $1 \overline{722} \xrightarrow{2} \overline{7912} \xrightarrow{7}$ $2 \overline{7912} \xrightarrow{3}$	Labeli ng 2M & correc t diagra m 4M

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

(ISO/IEC - 2700 rtified)

WINTER – 19EXAMINATION

MAHARASHTI (Autonomous)

Subject Name: Applied Electronics Model Answer Subject Code:

22329

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer							
Q.1		Attempt a	Attempt any FIVE of the following:						
	a)	List the ty	List the types of coupling used in BJT amplifier.						
	Ans:	Types of c i. Rea ii. Imp iii. Tra iv. Dir	 Fypes of coupling used in BJT amplifier: i. Resistance capacitance (RC)coupling ii. Impedance coupling iii. Transformer coupling iv. Direct coupling 						
	b)	Compare	small si	gnal amplifier w	ith power amplifier(an	y four)		2M	
	Ans:		Sr.No	Parameters Amplification quantity	Small signal Amplifiers It increases voltage into high resistance load. Hence small signal amplifiers are also called as	Power Amplifiers It increases power into low resistance load. Hence these amplifiers are also called as large		Any four points: each ½ M	
			2	Current Gain(β) Input Resistance(R _i)	voltage amplifiers. High(typically 100) Quite low	signal amplifiers. Low(5 to 20) Very large			
			4	Output	High	low			

			Impedance(R _o)				
		5	Physical size	Small	Large in size		
		6	Coupling	R-C coupling	Transformer		
					coupling		
		7	Power output	low	High		
c)	State four	advant	ages of negative f	eedback used in feedba	ack amplifier.		2M
Ans:	Advantag	es of ne	gative feedback:	(Any Four)			Each ½ M
	i. Dis	stortion of	decreases				
	ii. No	oise in ou	tput decreases				
	iii. Sta	ability of	gain of amplifier	improves			
	iv. It i	s used as	s an amplifier.				
	v. Op	erating p	point is stabilized.				
	vi. Inp	out resist	ance increases in o	certain configuration and	d output resistance de	ecreases in	
	cer	tain con	figurations.				
	vii. Ba	ndwidth	is increased				
d)	State Bar	khausen	criteria of oscilla	ation.			2M
Ans:	Where, Av	v = gain	of an amplifier wit	thout feedback also calle	ed open loop gain		1M
	$\beta A_V = pro$	oduct of	feedback fraction	and open loop gain. It is	called loop gain.		
	The Bark	hausen c	riterion for the ge	neration of sustained os	cillations. for positive	e feedback	
	are:						
	1. βA	$\Lambda = 1$					1M
	2. To	tal phase	e shift should be 30	$50^{\circ} \text{ or } 0^{\circ}$			
e)	Differenti	ate posi	tive feedback and	l negative feedback (fo	ur points)		2M
Ans:	Sr.	Parame	eter	Positive feedback	Negative feedback		Any Four
	No.						points
	1	T 11		T 1 1 1 1 1			Each ½ M
	1	Feedba	ack signal	In phase with the input	180° out of phase	1	
				signal.	with the input sign	ial.	
	2	Net inp	out signal	Increases	Decreases		
	3	Gain		Increases	Decreases		
	4	Noise 1	Increases	Increases	Decreases		
	5	Stabilit	ty	Poor	Improved		
	6	Input i	mpedance	decreases	increases		
	7	Output	impedance	increases	decreases		
	8	Uses		Oscillators, Schmitt	Amplifiers,		
	1			4	1		
				trigger	bootstrapping		

f)	State the need of tuned amplifier in electronic circuits.(four points)			
Ans:	(Note: Any two points can be given full marks) Need of tuned amplifier: i. Selects the desired radio frequency signal. ii. Amplifies the selected high or radiosignal to a suitable voltage level. iii. As a filter.			
g)	List the uses of heat sink (four points)	2M		
Ans:	Uses of heat sink:	Each		
	i. It is used to avoid thermal runaway in electronic circuits.	point		
	ii. Use to transfer heat generated by a mechanical or an electronic device to the surroundings.	1⁄2 M		
	iii. Use to optimize the heat exchange between component and surrounding by maximizing the contact surface between heat sink and air.			
	iv. Used to dissipate the amount of heat generated.			

0.2		Attempt any THREE of the following:							
Q.2		Attempt any THREE of the following:	Marks						
	a)	Explain the working principle of FET amplifier and list its two applications.	4M						
	Ans:	Circuit diagram:							
		$\left \begin{array}{c} R_{1} \\ R_{D} \end{array} \right _{L_{D}}$	$1 \frac{1}{2}M$						
		$\bigvee \geq R_2 \geq R_s + C_s$							
		Explanation:							
		i. When small a.c. signal is applied to the gate, it produces variation in the gate to	1 ½M						
		source voltage. This produces variation in the drain current. As the gate to							
		source voltage increases, the drain current also increases. As the result of this							
		voltage drop across R_D also increases. This causes the drain voltage to							
		decreases.							
		ii. As the input voltage rises, gate to source voltage becomes less negative, it will							
		increase the channel width and increase the level of drain current I_D .							
		iii. As the input voltage falls, it will decrease the channel width and decrease the							
		level of drain current I _D . Thus I _D varies sinusoidally above its Q point value.							
		iv. The drain to source voltage V_{DS} is given by $V_{DS} = V_{DD} - I_D R_D$							
		v. Therefore as I_D increases the voltage drop I_DR_D will also increase and voltage							
		V _{DS} will decrease.							
		vi. If ΔI_D is large for a small value of ΔV_{GS} ; the ΔV_{DS} will also be large and we get							
		amplification. Thus the AC output voltage V_{DS} is 180° out of phase with AC							

MAHAR (Autonom (ISO/IEC	RASHTI nous) C - 2700 BOARD OF TECHNICAL EDUCATION rtified)	
	input voltage.	
	Applications: (Any 2)	1M
	i. Low noise amplifier	(1/2 M
	ii. Buffer amplifier	each)
	iii. Cascade amplifier	
	iv. Analog switch	
	v. Multiplexer	
	vi. Chopper	
	vii Current limiter	

Compare the performance of voltage series and current series type of negative **4**M b) feedback amplifiers.(four points)

Ans:	Sr.No	Parameters	voltage series negative feedback amplifiers	current series type negative feedback amplifiers	o A ny fo c point Each p	our
	1	Block diagram	$ \begin{array}{c} + \\ V_{s} \\ - \\ - \\ V_{i} \\ - \\ - \\ - \\ V_{i} \\ - \\ - \\ - \\ \end{array} $	Vin Op-amp	-1M	
	2	Gain	Decreases	Decreases		
	3	Output resistance	Decrease $Z_{if} = \frac{ZI}{1 + \beta A}$	Increase Z _{if} =Z _i (1+βA)		
	4	Input resistance	Increases $Z_{if}=Z_i(1+\beta A)$	Increase $Z_{if}=Z_i(1+\beta A)$		
2)	5	Disortion	Decrease	Decrease		
Ans:	Diagrar	n:	and of Sivir 5 and state its working prine.	цис.	2M	

2M

4M

Circuit

diagram 1M BOARD OF TECHNICAL EDUCATION

MAHARASHTI (Autonomous)

MAHARASHTI (Autonomous) (ISO/IEC - 2700

Q.3		Attempt any THREE of the following:	12-Total Marks					
	a)	Classify the power amplifiers on the basis of operation and input/output waveforms.						
	Ans:	 Depending upon the operation and input/output waveforms power amplifiers are classified into following type. 1) Class A amplifier. 2) Class B amplifier. 3) Class C amplifier. 4) Class AB amplifier. 5) Class D amplifier. 	Any 4 types 1M each					
	b)	Describe the operation of class-C type of power amplifier with the help of neat sketch.	4M					
	Ans:	 Circuit diagram: Circuit diagram: Operation: Class C power amplifier is a type of amplifier where the transistor conducts for less than one half cycle of the input signal. Less than one half cycles means the conduction angle is less than 180° and its typical value is 80° to 120°. Biasing resistor R_b pulls the base of Q₁ further downwards and the Q-point will be set below the cut-off point in the DC load line. As a result the transistor will start conducting only after the input signal amplitude has risen above the base emitter voltage (Vbe~0.7V) plus the downward bias voltage caused by R_b. That is the reason why the major portion of the input signal is absent in the output signal. Inductor L₁ and capacitor C₁ forms a tank circuit which is used in the extraction of the required signal from the pulsed output of the transistor. Values of L1 and C₁ are so selected that the resonant circuit oscillates in one frequency (generally the carrier frequency) all other frequencies are attenuated. 	2M 2M					
	c)	Justify the need of current time base generator to obtain the specified sawtooth waveform with one example.						
	Ans:	 Justification:- Current Time base generator is a circuit where the output current is a linear function of time over a specified time interval. Time base circuits are used by radar systems to determine range to a target, by comparing the current location along the time base to the time of arrival of radio 	Justification 2M, Waveform					

Example:

- A cathode ray tube (CRT) consists of three primary parts, the electron gun that provides a stream of accelerated electrons, the phosphor-covered screen that lights up when the electrons hit it, and the deflection plates that use magnetic or electric fields to deflect the electrons in-flight and allows them to be directed around the screen.
- It is the ability for the electron stream to be rapidly moved using the deflection plates that allow the CRT to be used to display very rapid signals.
- To display such a signal on an oscilloscope for examination, it is desirable to have the electron beam sweep across the screen so that the electron beam cycles at the same frequency as the carrier, or some multiple of that base frequency.
- This is the purpose of the current time base generator, which is attached to one of the set of deflection plates, normally the X axis, while the amplified output of the radio signal is sent to the other axis, normally Y. The result is a visual re-creation of the original waveform.

Fig: A current time base circuit.

		However the current IADJ is very small and constant. Therefore the voltage drop across R2 due to IADJ is also very small and can be neglected. Therefore	
		$V_0=1.25.(1+\frac{R_1}{R_2})$ The output is a function of R ₁ for a given value of R ₂ and can be varied by adjusting the value of R ₁ . The resistor R ₂ usually is 240 ohm. Normally no capacitor is needed unless the LM317 is situated far from the power supply filter capacitor.	Output equation- 1M
.4		Attempt any THREE of the following :	12-Total Marks
	a)	Draw the two stage BJT amplifier. State the formula for overall gain of this amplifier.	4M
	Ans:	Diagram: V_{cc} $R_1 \neq R_{c1} = R_{c2} = R_$	31/1
		Let Av_1 -Voltage gain of first amplifier Av_2-voltage gain of second amplifier Overall voltage gain. $Av = Av_1 * Av_2$	Formula 1M
	b)	Draw the circuit diagram of class AB power amplifier and describe its working.	4M
	Ans:	Circuit diagram:	Formula 1M 4M 2M
		r_{z} r	2M
		Circuit Description:	
		The circuit consists of two center-tapped transformers T_1 and T_2 , two identical transistors Q_1 and Q_2 , Resistor R and diode D. The DC voltage developed across the diode D is connected to the bases of both the transistors through the secondary winding	

c)		
``	foodbook omplifior	4M
	 phase with each other. V_{CC} is tied to the transistor collectors through the centre tapped output transformer T₂. R_e is stabilized resistor. When positive half cycle of the input signal is applied, the base of Q₁ becomes positive and base of Q₂ negative. Therefore Q₁ is ON and Q₂ is OFF. As transistors Q₁ and Q₂ are biased just above cut off. Therefore as positive input cross zero, collector current ic₁ starts flowing through Q₁, through transformer T₂ as shown and ic₂ = 0. A positive sinusoidal voltage will appear across load. When negative half cycle is applied across input the base of Q₁ becomes negative while the base of Q₂ is positive. Therefore Q₁ is off and Q₂ conduct, as soon as input cross zero, negative sinusoidal voltage will appear across load. With the help of neat circuit diagram, explain the operation of voltage shunt type 	
	• Resistor R_1 , R_2 are chosen to provide biasing to the transistors Q_1 , Q_2 , input transformer T_1 provides phase splitting function in which two voltages are out of	
	Vin Vin Q1 ist T2 Vin Q2 Vcc Q2 Circuit operation:-	
	OR Circuit diagram:-	
	 equal to cut-in voltage and they will conduct for complete half cycleperiod of the input to eliminate the cross-over distortion. WORKING: WORKING: When there is no a.c. input signal is applied both the transistors Q₁& Q₂ are cut off. Hence no current is drawn from VCC. DURING POSITIVE HALF CYCLE: The base of the transistor Q₁ is positive and that of Q₂ is negative. iii. As a result of this Q₁ conducts, while the transistor Q₂ is OFF. ¬ DURING DURING NEGATIVE HALF CYCLE: The base of the transistor Q₂ is positive and that of Q₁ is negative. As a result of this Q₂ conducts, while the transistor Q₁ is OFF. iv. Thus at any instant any one transistor in the circuit is conducting. Then the output transformer joins these two halves & produces a full sine wave in the load resistor. 	2M

	Fig. show between it signal is a (out of phi- Hence $I_F = \frac{V_b - V_b}{R_F}$ $\therefore V_b << V$ $\therefore I_f = -$ Thus if we therefore in negative f	is comm ts outpu pplied to ase with the feed $\frac{V_o}{R_F}$ e reduce it is volta eedback	on emitter transistor amplifier v t and input terminals. This is control to the input then amplified output input) with the input. back current is given by – the output voltage to zero then f age feedback. As $I_S = I_f + I_i$ it is a amplifier.	Free $R_{\rm F}$ $R_{\rm F}$ $V_{\rm O}$ $R_{\rm F}$ $C_{\rm F}$ with a feedback resistor $R_{\rm F}$ conductor to base biasing when the Vo is produced with 180 ⁰ phase biasing when the Vo is produced with 180 ⁰ phase biase bias	nnected e input se shift zero, shunt	Explanatio n 2M
 d)	Compare	betwee	n RC phase shift oscillator and	crystal oscillator.		4M
Ans:	(Note: Any other relevant point also can be considered.)					
		Sr. No.	RC phase shift oscillator	Crystal oscillator		1M
		1	This oscillator is used for low frequency range.	Quartz crystal is mainly used in radio-frequency (RF) oscillators		each point
		2	Used resistor and capacitor network to decide frequency of oscillator.	Crystal decides the frequency of oscillator.		
		3	RC phase shift oscillators are comparatively less stable.	crystal oscillators are highly stable		
		4	RC network is used as feedback network.	Crystal is connected in feedback.		
e)	Compare the fixed voltage regulators using 78XX and 79XX.(any four points)					
Ans:	(Note: Ar	ny other	relevant point also can be cons	sidered.)		1M each

Sr. point 78xx 79xx No. It produces positive fixed It produces negative 1 DC voltage values, fixed DC voltage values IC 79xx (7905, IC 78xx (7805, 7806, 7808, 7906,7908,7912, 7915) -2 7812, 7815, 7818, 7824)-Negative Voltage Positive Voltage Regulator. Regulator 3 Output current is 1A Output current is 1.5A IC 3 IC 79XX Output Input 78XX Output Input 1 2 Ground 4 Ground OR OR 1-Input 1-Ground 2-Ground 2-Input 3-Output 3-Output Q.5 Attempt any TWO of the following 12 Total Marks Describe the operation of double tuned amplifier with the help of neat circuit **6M (a)** diagram and mention its applications. **Circuit diagram: 2M** Ans: /cc CC R-**Operation:** The signal to be amplified is applied at the input terminal through the coupling ٠ $2\mathbf{M}$ capacitor C_C The resonant frequency of the tuned circuit $L_1 C_1$ is made equal to that of tuned • circuit L₂ C₂ Under these conditions the tuned circuit offers avery high impedance to the input • signal. As a result of this, a large output appears across the tuned circuit L_1C_1 which is inductively coupled to the L_2C_2 tuned circuit. 1M each **Applications:**(any two) (i) Radio and T.V broadcasting as tuning circuit.

دلأثاد

MAHARASHTF

(ISO/IEC - 2700

(Autonomous)

BOARD OF TECHNICAL EDUCATION

		2. In public address systems (PA system)							
		 In tape recorders and music system In T.V receivers 							
		4. In 1. Viecelvels							
	(c)	applications.							
	Ans:	Circuit Diagram:							
		R_{B2} C R_{C} V_{O} V_{O} Q_{2}							
		 Applications (Any Two): In Television (TV) In CRO To convert step waveform into ramp waveform. 	1M each						
Q.6		Attempt any TWO of the following:	12Total Marks						
	(a)	For a BJT ac amplifier, with a midband voltage gain of 200, if the cutoff frequencies are f_1 =20Hz and f_2 =20KHz.Draw the frequency response for amplifier.	6М						
-	Ance	Draw the frequency response in case of find gain of 100 and 11–500112 to 12–518112.	3M						
	Alls.	(i) Frequency response for amplifier with mid-band voltage gain of 200, if the cutoff frequencies are $f_1=20$ Hz and $f_2=20$ KHz.	3141						
		(ii) Erequency response for amplificr with mid-band voltage gain of 100 if							
		(ii) Frequency response for amplifier with mid-band voltage gain of 100, if the outoff frequencies are f_{1} = 500Hz and f_{2} = 5KHz							
		the cuton nequencies are r_1 -sound and r_2 = sknz.	3М						

(Autonomous) (ISO/IEC - 2700

MAHARASHTI

